Vector partition function and representation theory
نویسنده
چکیده
We apply some recent developments of Baldoni-Beck-CochetVergne [BBCV05] on vector partition function, to Kostant’s and Steinberg’s formulae, for classical Lie algebras Ar, Br , Cr , Dr . We therefore get efficient Maple programs that compute for these Lie algebras: the multiplicity of a weight in an irreducible finite-dimensional representation; the decomposition coefficients of the tensor product of two irreducible finite-dimensional representations. These programs can also calculate associated Ehrhart quasipolynomials. Nous appliquons des résultats récents de Baldoni-Beck-Cochet-Vergne [BBCV05] sur la fonction de partition vectorielle, aux formules de Kostant et de Steinberg, dans le cas des algèbres de Lie classiques Ar, Br , Cr , Dr. Ceci donne lieu à des programmes Maple efficaces qui calculent pour ces algèbres de Lie : la multiplicité d’un poids dans une représentation irréductible de dimension finie ; les coefficients de décomposition du produit tensoriel de deux représentations irréductibles de dimension finie. Ces programmes permettent également d’évaluer les quasipolynômes d’Ehrhart associés.
منابع مشابه
A representation for some groups, a geometric approach
In the present paper, we are going to use geometric and topological concepts, entities and properties of the integral curves of linear vector fields, and the theory of differential equations, to establish a representation for some groups on $R^{n} (ngeq 1)$. Among other things, we investigate the surjectivity and faithfulness of the representation. At the end, we give some app...
متن کامل3d Local Non-uniform Field Model Based on 3d Vector Model Frame
This paper proposes a model, which is called ‘3D (Three Dimension) local non-uniform field model based on 3D vector model frame’, which integrate ‘3D volume function analytical model’ and ‘3D local raster model’into the frame of ‘3D vector boundary model’, to express 3D object and local non-uniform attribute data field. In the model, the authors adopt 3D vector boundary model as basic frame, th...
متن کاملVertex Operators and Moduli Spaces of Sheaves
The Nekrasov partition function in supersymmetric quantum gauge theory is mathematically formulated as an equivariant integral over certain moduli spaces of sheaves on a complex surface. In SeibergWitten Theory and Random Partitions, Nekrasov and Okounkov studied these integrals using the representation theory of “vertex operators” and the infinite wedge representation. Many of these operators ...
متن کاملمحاسبه سطح مقطع پراکندگی تفکیک پروتون- دوترون در انرژیهای میانی
In this paper, we reformulate three-nucleon breakup scattering in leading order approximation by considering spin-isospin degrees of freedom. At first, considering the inhomogeneous part of Faddeev equation, which is a valid approximation in high and intermediate energles, we present the Faddeev equation as a function of vector Jacobi momenta and spin and isospin quantum numbers. In this new fo...
متن کاملThe Partial-Fractions Method for Counting Solutions to Integral Linear Systems
We present a new tool to compute the number φA(b) of integer solutions to the linear system x ≥ 0 , Ax = b , where the coefficients of A and b are integral. φA(b) is often described as a vector partition function. Our methods use partial fraction expansions of Euler’s generating function for φA(b). A special class of vector partition functions are Ehrhart (quasi-)polynomials counting integer po...
متن کامل